

Cellule photovoltaïque

La caractéristique courant-tension d'un capteur photovoltaïque est une courbe qui représente l'évolution de l'intensité du courant électrique que le capteur délivre en fonction de la tension entre ses bornes. Le tableau ci-dessous donne l'intensité du courant en fonction de la tension correspondante pour un éclairement donné.

Tension (en V)	0	0,8	1,3	1,6	1,9	2,3	2,5	2,7
Intensité (en mA)	11	11	11	10	9,2	5,7	2,5	0,3

- Tracer la caractéristique I = f(U).
 Echelle : 1 cm (1 grand carreau) pour 0,2 V en abscisses et 1 cm (1 grand carreau) pour 1 mA en ordonnées.
- 2) A partir du tableau, calculer pour chaque couple de mesures (I ;U) la puissance électrique délivrée par le capteur.
- 3) Pour quelles valeurs U₀ et I₀ cette puissance est maximale ? Entourer alors le point de fonctionnement sur la courbe.
- 4) En déduire la valeur particulière de la résistance R branchée aux bornes du capteur pour laquelle la puissance délivrée par ce dernier est maximale.
- 5) Quelle est l'utilité de connaître le point de fonctionnement d'un capteur photovoltaïque ?

